Let $f(n,m)$ be minimal such that in $(m,m+f(n,m))$ there exist distinct integers $a_1,\ldots,a_n$ such that $k\mid a_k$ for all $1\leq k\leq n$. Prove that\[\max_m f(n,m) \leq n^{1+o(1)}\]and that\[\max_m (f(n,m)-f(n,n)) o \infty.\]