Given $a_{i}^n\in [-1,1]$ for all $1\leq i\leq n<\infty$ we define $p_{i}^n$ as the unique polynomial of degree $n-1$ such that $p_{i}^n(a_{i}^n)=1$ and $p_{i}^n(a_{i'}^n)=0$ if $1\leq i'\leq n$ with $i\neq i'$. We similarly define\[\mathcal{L}^nf(x) = \sum_{1\leq i\leq n}f(a_i^n)p_i^n(x),\]the unique polynomial of degree $n-1$ which agrees with $f$ on $a_i^n$ for $1\leq i\leq n$ (that is, the sequence of Lagrange interpolation polynomials). Is there such a sequence of $a_i^n$ such that for every continuous $f:[-1,1]\to \mathbb{R}$ there exists some $x\in [-1,1]$ where\[\limsup_{n\to \infty} \sum_{1\leq i\leq n}\lvert p_{i}^n(x)\rvert=\infty\]and yet\[\mathcal{L}^nf(x) \to f(x)?\]Is there such a sequence such that\[\limsup_{n\to \infty} \sum_{1\leq i\leq n}\lvert p_{i}^n(x)\rvert=\infty\]for every $x\in [-1,1]$ and yet for every continuous $f:[-1,1]\to \mathbb{R}$ there exists $x\in [-1,1]$ with\[\mathcal{L}^nf(x) \to f(x)?\]