If $A,B\subset \{1,\ldots,N\}$ are two Sidon sets such that $(A-A)\cap(B-B)=\{0\}$ then is it true that\[ \binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq\binom{f(N)}{2}+O(1),\]where $f(N)$ is the maximum possible size of a Sidon set in $\{1,\ldots,N\}$? If $\lvert A\rvert=\lvert B\rvert$ then can this bound be improved to\[\binom{\lvert A\rvert}{2}+\binom{\lvert B\rvert}{2}\leq (1-c+o(1))\binom{f(N)}{2}\]for some constant $c>0$?