Let $A\subset (1,\infty)$ be a countably infinite set such that for all $x\neq y\in A$ and integers $k\geq 1$ we have\[ \lvert kx -y\rvert \geq 1.\]Does this imply that $A$ is sparse? In particular, does this imply that\[\sum_{x\in A}\frac{1}{x\log x}<\infty\]or\[\sum_{\substack{x